The Waring problem for matrix algebras, II

نویسندگان

چکیده

Let f $f$ be a noncommutative polynomial of degree m ⩾ 1 $m\geqslant 1$ over an algebraically closed field F $F$ characteristic 0. If n − $n\geqslant m-1$ and α , 2 3 $\alpha _1,\alpha _2,\alpha _3$ are nonzero elements from such that + = 0 _1+\alpha _2+\alpha _3=0$ then every trace zero × $n\times n$ matrix can written as A _1 A_1+\alpha _2A_2+\alpha _3A_3$ for some i $A_i$ in the image M ( ) $M_n(F)$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The quadratic Waring–Goldbach problem

It is conjectured that Lagrange’s theorem of four squares is true for prime variables, i.e. all positive integers n with n 4 ðmod 24Þ are the sum of four squares of primes. In this paper, the size for the exceptional set in the above conjecture is reduced to OðN 3 8 þeÞ: r 2004 Elsevier Inc. All rights reserved. MSC: 11P32; 11P05; 11N36; 11P55

متن کامل

On the Waring problem for polynomial rings.

In this note we discuss an analog of the classical Waring problem for C[x0,x1,...,x(n)]. Namely, we show that a general homogeneous polynomial p ∈ C[x0,x1,...,x(n)] of degree divisible by k≥2 can be represented as a sum of at most k(n) k-th powers of homogeneous polynomials in C[x0,x1,...,x(n)]. Noticeably, k(n) coincides with the number obtained by naive dimension count.

متن کامل

WARING ’ S PROBLEM FOR POLYNOMIALS Stephen McAdam

SECTION 1: INTRODUCTION. Lagrange proved that any positive integer was the sum of four or fewer numbers of the form x with x a positive integer. Waring asked if given an n ≥ 2, there is an f = f(n) such that every positive integer is the sum of f or fewer numbers of the form x with x a positive integer. Hilbert showed the answer was yes, via a very difficult and sophisticated proof. Subsequentl...

متن کامل

Waring Problem for Polynomials in Two Variables

We prove that all polynomials in several variables can be decomposed as the sum of kth powers: P (x1, . . . , xn) = Q1(x1, . . . , xn) + · · ·+Qs(x1, . . . , xn), provided that elements of the base field are themselves sum of kth powers. We also give bounds for the number of terms s and the degree of the Qi . We then improve these bounds in the case of two variables polynomials to get a decompo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2023

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12825