The Waring problem for matrix algebras, II
نویسندگان
چکیده
Let f $f$ be a noncommutative polynomial of degree m ⩾ 1 $m\geqslant 1$ over an algebraically closed field F $F$ characteristic 0. If n − $n\geqslant m-1$ and α , 2 3 $\alpha _1,\alpha _2,\alpha _3$ are nonzero elements from such that + = 0 _1+\alpha _2+\alpha _3=0$ then every trace zero × $n\times n$ matrix can written as A _1 A_1+\alpha _2A_2+\alpha _3A_3$ for some i $A_i$ in the image M ( ) $M_n(F)$ .
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe quadratic Waring–Goldbach problem
It is conjectured that Lagrange’s theorem of four squares is true for prime variables, i.e. all positive integers n with n 4 ðmod 24Þ are the sum of four squares of primes. In this paper, the size for the exceptional set in the above conjecture is reduced to OðN 3 8 þeÞ: r 2004 Elsevier Inc. All rights reserved. MSC: 11P32; 11P05; 11N36; 11P55
متن کاملOn the Waring problem for polynomial rings.
In this note we discuss an analog of the classical Waring problem for C[x0,x1,...,x(n)]. Namely, we show that a general homogeneous polynomial p ∈ C[x0,x1,...,x(n)] of degree divisible by k≥2 can be represented as a sum of at most k(n) k-th powers of homogeneous polynomials in C[x0,x1,...,x(n)]. Noticeably, k(n) coincides with the number obtained by naive dimension count.
متن کاملWARING ’ S PROBLEM FOR POLYNOMIALS Stephen McAdam
SECTION 1: INTRODUCTION. Lagrange proved that any positive integer was the sum of four or fewer numbers of the form x with x a positive integer. Waring asked if given an n ≥ 2, there is an f = f(n) such that every positive integer is the sum of f or fewer numbers of the form x with x a positive integer. Hilbert showed the answer was yes, via a very difficult and sophisticated proof. Subsequentl...
متن کاملWaring Problem for Polynomials in Two Variables
We prove that all polynomials in several variables can be decomposed as the sum of kth powers: P (x1, . . . , xn) = Q1(x1, . . . , xn) + · · ·+Qs(x1, . . . , xn), provided that elements of the base field are themselves sum of kth powers. We also give bounds for the number of terms s and the degree of the Qi . We then improve these bounds in the case of two variables polynomials to get a decompo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2023
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12825